Neural Network Architecture Selection: Can function complexity

نویسندگان

  • Iván Gómez
  • José M. Jérez
چکیده

This work analyzes the problem of selecting an adequate neural network architecture for a given function, comparing existing approaches and introducing a new one based on the use of the complexity of the function under analysis. Numerical simulations using a large set of Boolean functions are carried out and a comparative analysis of the results is done according to the architectures that the different techniques suggest and based on the generalization ability obtained in each case. The results show that a procedure that utilizes the complexity of the function can help to achieve almost optimal results despite the fact that some variability exists for the generalization ability of similar complexity classes of functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations

This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...

متن کامل

Survey the Security Function of Integration of vehicular ad hoc Networks with Software-defiend Networks

In recent years, Vehicular Ad Hoc Networks (VANETs) have emerged as one of the most active areas in the field of technology to provide a wide range of services, including road safety, passenger's safety, amusement facilities for passengers and emergency facilities. Due to the lack of flexibility, complexity and high dynamic network topology, the development and management of current Vehicular A...

متن کامل

Neural Network Architecture Selection: Size Depends on Function Complexity

The relationship between generalization ability, neural network size and function complexity have been analyzed in this work. The dependence of the generalization process on the complexity of the function implemented by neural architecture is studied using a recently introduced measure for the complexity of the Boolean functions. Furthermore an association rule discovery (ARD) technique was use...

متن کامل

Neural Network Architecture Optimization through Submodularity and Supermodularity

Deep learning models’ architectures, including depth and width, are key factors influencing models’ performance, such as test accuracy and computation time. This paper solves two problems: given computation time budget, choose an architecture to maximize accuracy, and given accuracy requirement, choose an architecture to minimize computation time. We convert this architecture optimization into ...

متن کامل

Prediction Risk and Architecture Selection for Neural Networks

We describe two important sets of tools for neural network modeling: prediction risk estimation and network architecture selection. Prediction risk is defined as the expected performance of an estimator in predicting new observations. Estimated prediction risk can be used both for estimating the quality of model predictions and for model selection. Prediction risk estimation and model selection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009